Rev. 1.0

济南罗威智能科技有限公司

薄片式远程 I/0 产品用户手册

版本号: V 1.00

发布日期: 2022.01.14

© Author reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

济南罗威智能科技有限公司

版本信息

No.

版本	日期	说明	修改人
V1.00	2022. 04. 16	发布版本	

所有权信息

未经版权所有者同意,不得将本文档的全部或者部分以纸质或者电子文档的形式重新发布。

免责声明

本文档只用于辅助读者使用产品,本公司不对使用该文档中的信息而引起的损失或者错误负责。本文档描述的产品和文本正在不断地开发和完善中。济南罗威智能科技有限公司有权利在未通知用户的情况下修改本文档。

文档使用说明

本文档描述产品功能规格、安装、操作及设定,以及有关网络协议内容。该文档仅适用于训练有 素的电气自动化工程师使用。

专利说明

本产品的设计者已经对产品的外观和技术实现方法申请了专利保护,任何试图抄袭、仿制或者反向设计的行为都可能触犯法律。

安全事项

本产品为工业场合使用的专业设备,需具备电气操作经验的工作人员才可使用。使用前请务必仔细阅读本手册,并依照指示操作,以免造成人员伤害或产品受损。

本产品符合 IP20 防护等级设计,使用时需要安装在具备防尘、防潮功能的配电柜中。

软件下载

请登录济南罗威智能科技有限公司官网 http://www.rvauto.cn/下载。

RVUC

Page3/43

目 录

1	产品概述	5
	1.1产品特性	6
	1.1.1 RVUC 系列耦合器模块尺寸图	6
	1.1.2 RVES 系列扩展模块尺寸图	7
2	网络适配器模块	8
	2. 1 RVUC-PNB.	8
	2.1.1 模块概述	8
	2.1.2 接口介绍	9
	2.1.3 LED 指示灯	10
	2.1.4 系统状态指示系统的工作状态说明如表	10
	2.1.5 背板指示系统的工作状态说明如表	10
	2.1.6 RJ45 指示灯	10
	2.1.7 PROFINET 适配器通讯接口定义	11
	2.1.8 PROFINET 适配器电气接线图	11
	2. 2 RVUC-EPB.	12
	2.2.1 模块概述	12
	2.2.2 接口介绍	13
	2.2.3 LED 指示灯	14
	2.2.4 系统状态指示系统的工作状态说明如表	14
	2.2.5 背板指示系统的工作状态说明如表	14
	2.2.6 RJ45 指示灯	14
	2.2.7 ETHERNET/IP 适配器通讯接口定义	
	2.2.8 ETHERNET/IP 适配器电气接线图	
3	扩展模块	16
3.	. 1 RVES-1160D(16 通道数字量输入模块)	16
	3.1.1 模块概述	16
	3.1.2 模块参数	16
	3.1.3 接口介绍	17
	3.1.4 LED 指示灯	17
	3.1.5 背板指示系统的工作状态说明如表	18
	3.1.6 输入状态指示	18
	3.1.7 接线端子定义	18
	3.1.8接线图	19
	3.1.9 过程数据定义	20
	3.1.10 配置参数定义	20
	3.2 RVES-216xD(16 通道数字量输出模块)	21
	3.2.1 模块概述	21
	3.2.2 模块参数	21
	3.2.3 接口介绍	
	3.2.4 LED 指示灯	22
	3.2.5 背板指示系统的工作状态说明如表	23

No.

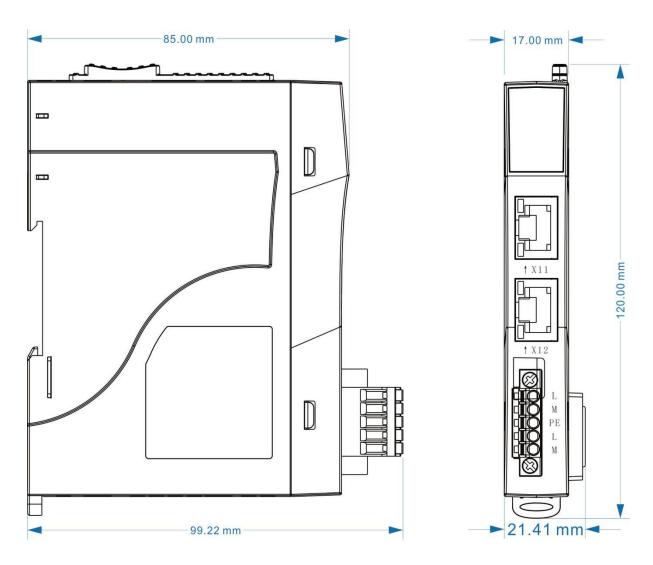
	3. 2. 6 输出状态指示	23
	3. 2. 7 接线端子定义	23
	3. 2. 8 接线图	24
	3.2.9 过程数据定义	24
	3. 2. 10 配置参数定义	25
3. 3	RVES-308xA(8 通道模拟量输入模块)	26
	3. 3. 1 模块概述	26
	3. 3. 2 模块参数	26
	3.3.3 接口介绍	27
	3. 3. 4 LED 指示灯	27
	3.3.5 背板指示系统的工作状态说明如表	28
	3. 3. 6 接线端子定义	28
	3. 3. 7 接线图	29
	3. 3. 8 过程数据定义	30
	3. 3. 9 配置参数定义	30
3.4	RVES-408xA(8 通道模拟量输出模块)	32
	3.4.1 模块概述	32
	3. 4. 2 模块参数	32
	3.4.3 接口介绍	33
	3. 4. 4 LED 指示灯	33
	3.4.5 背板指示系统的工作状态说明如表	34
	3.4.6 接线端子定义	34
	3. 4. 7 接线图	35
	3.4.8 过程数据定义	36
	3. 4. 9 配置参数定义	36
4 应用测	川试	38
4. 1	RVUC-PNx 与西门子 S7-1200 (TIA V14) 连接使用入门	38
	4.1.1 新建项目	38
	4.1.2 添加西门子 PLC	38
	4. 1. 3 GSD 文件导入	39
	4. 1. 4 设置 PLC 参数	40
	4.1.5添加模块	40
	4.1.6 修改模块内部的设备名称	41
	4.1.7 插入扩展模块	41
	4.1.8 扩展模块参数设置	42
	4.1.9 硬件配置完成	42
5 支持及	を服务	43

Rev. I.U

Page5/43

1 产品概述

本产品为工业场合使用的专业设备,需具备电气操作经验的工作人员才可使用。使用前请务必仔细阅读本手册,并依照指示操作,以免造成人员伤害或产品受损。

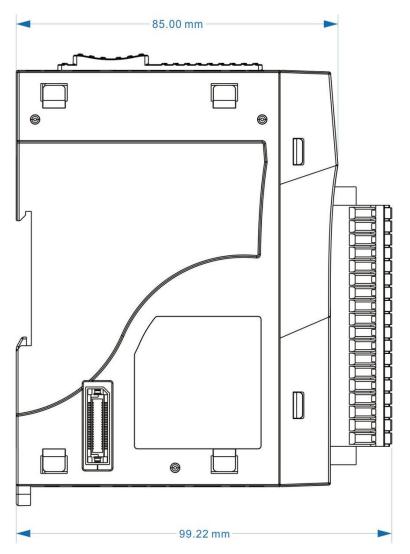

本产品符合 IP20 防护等级设计,使用时需要安装在具备防尘、防潮功能的配电柜中。

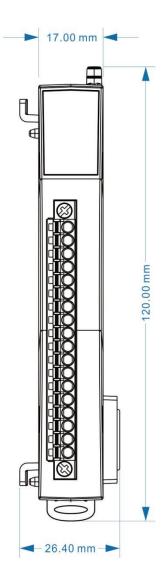
分布式远程 IO 系统由网络适配器模块和扩展 IO 模块组成,网络适配器模块负责现场总线通讯,实现和主站控制器或者上位机软件的通讯连接。 扩展 IO 模块负责和现场的输入输出传感器进行连接,输入 IO 模块采集现场各种信号并通过内部总线发送到网络适配器,控制器通过现场总线从适配器中读取数据并加工处理,然后将输出数据写入到网络适配器中,网络适配器再通过内部总线将输出数据写入到输出 IO 模块,从而实现设备的控制。 网络适配器可根据控制器系统的通信接口选择对应总线的模块,主流的工业通讯协议包括 Profinet、EtherCAT、EtherNet/IP、CC-LinkIE等。扩展 IO 模块分为 6 大类,数字量输入模块、数字量输出模块、模拟量输入模块、模拟量输出模块、特殊模块、混合 IO 模块等。 网络适配器和扩展 IO 模块之间可以根据现场需求自由组合,在点位较多的情况下采用分布式 IO 模块可以实现更低的成本要求。

1.1 产品特性

No.

1.1.1 RVUC 系列耦合器模块尺寸图




RVUC 耦合器模块安装尺寸: 120 * 17 * 99.22mm

Page7/43

1.1.2 RVES 系列扩展模块尺寸图

No.

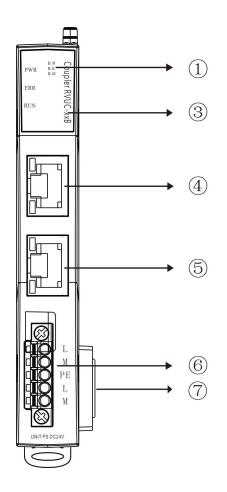
RVES 扩展模块安装尺寸: 120 * 17 * 99.22mm

Page8/43

2 网络适配器模块

2.1 RVUC-PNB

2.1.1 模块概述


RVUC-PNB Profinet 网络适配器支持标准 Profinet IO Device 设备通讯。支持 RT 实时通讯模 式,RT 实时通讯最小周期为 1ms。适配器支持最大输入 1440 字节,最大输出 1440 字节,支持的扩展 I0 模块数量为32个。

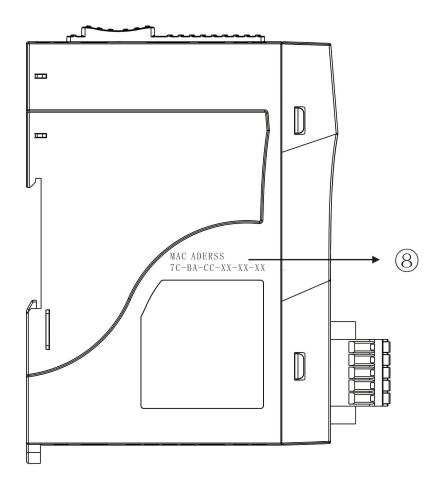

型号		RVUC-PNB		
总线接	口	2*RJ45		
扩展接	口	2*20Pin 板对板连接器		
电源接	口	插拔式接线端子 5Pin (带螺丝固定)		
工作电	压	24V DC (-15%~20%)		
工作电	流	150mA		
通讯协	议	PROFINET RT		
通讯速率((Max)	100Mb/s		
编址方	式	由主站软件设置		
支持扩展数量(Max)		32		
I/O 容量(Max)	Input(bit)	1440		
1/0 台里(MdX)	Output(bit)	1440		
背板输出	电压	24V DC		
月似柳山	电流	2A		
接口/通讯	人线缆	2*RJ45/5 类双绞线		
安装方式		DN35 导轨安装		
		环境参数		
工作温度		-40~85°C		
环境湿	度	5%-95%无冷凝		
防护等	级	IP20		

表1适配器硬件参数

2.1.2 接口介绍

No.

- ①背板状态指示灯
- ②总线系统状态指示灯
 - ③模块型号
 - ④通讯接口 PORT1
 - ⑤通讯接口 PORT2
 - ⑥模块电源端子
 - ⑦背板扩展接口
 - ⑧ 模块 MAC 码

注: PORT1、PORT2 为 Profinet 通讯端口,支持交换机功能,10M/100M 自适应速率。

Page10/43

No.

模块的 LED 指示分为 3 部分: 总线系统状态指示 、背板指示灯、RJ45 链路指示灯。

2.1.4 系统状态指示系统的工作状态说明如表

PWR(电源)	ERR (故障)	RUN(运行)	说明
			电源异常或者无电源
			通讯接口故障
	•		模块成功进入运行状态,成 功与主站建立循环数据交 互。

表 2 系统状态指示

2.1.5 背板指示系统的工作状态说明如表

B. R	В. Е	В. М	说明
			背板启动中
			背板运行正常
			耦合器模块背板错误
			扩展模块背板错误

表 3 系统状态指示

2.1.6 RJ45 指示灯

在正常情况下, RJ45 端口指示灯应该是绿灯长亮、黄灯闪烁, 如果不是这样, 就说明故障发生 了。绿灯不亮,表明 RJ45 端口有连接到 Hub 或交换机的连接有故障;黄灯不亮,可能就是模块本身出 现的故障如表 4: 表 4 RJ45 指示灯说明

LINK1/LINK2	ACT1/ACT2	说明
	不相关	RJ45 端口没有网线连接或者连接不良
	不相关	RJ45 端口正确的识别到以太网网络
不相关		RJ45 端口没有数据交互
不相关		RJ45 端口有数据交互

表 4 RJ45 指示灯说明

Rev. 1.0

2.1.7 PROFINET 适配器通讯接口定义

模块使用双 RJ45 插座通信的物理接口,模块本身具备交换机功能。分别标识为 X1P1 、X1P2,每一个端口都分别具备一个独立的 MAC 地址与模块上的标识 mac 相邻。

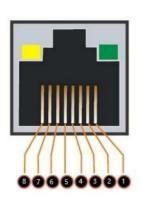
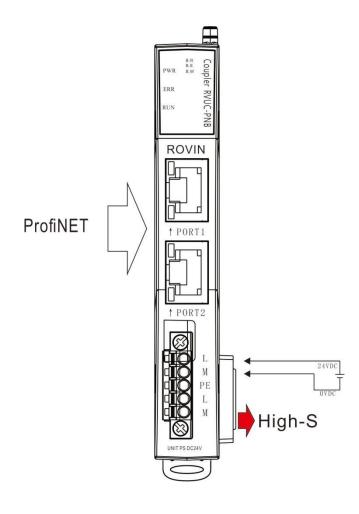



表 5 Profinet 通讯接口

引脚	信号	描述
1	TX+	数据发送+
2	TX-	数据发送-
3	RX+	数据接收+
4	NC	未使用
5	NC	未使用
6	RX-	数据接收-
7	NC	未使用
8	NC	未使用
连接器外	PE	接地

2.1.8 PROFINET 适配器电气接线图

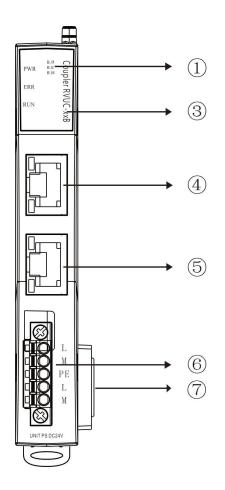
No.

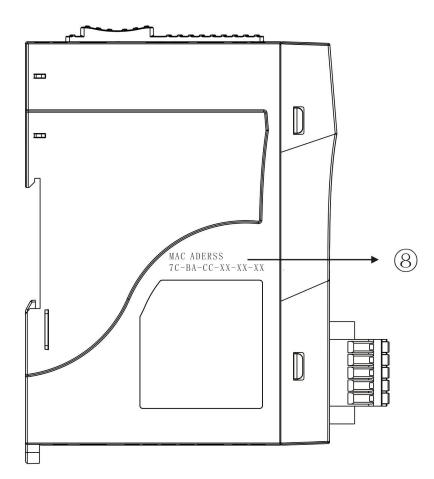
Page12/43

2.2 EVUC-EPB

2.2.1 模块概述

RVUC-EPB ETHERNET/IP 网络适配器支持标准 ETHERNET/IP IO Device 设备通讯。支持的扩展 IO 模块数量为32 个。


		适配器硬件参数	
型号		RVUC-EPB	
总线接		2*RJ45	
扩展接		2*20Pin 板对板连接器	
电源接		插拔式接线端子 5Pin (带螺丝固定)	
工作电	压	24V DC (-15%~20%)	
工作电	流	150mA	
通讯协	议	ETHERNET/IP	
通讯速率((Max)	100Mb/s	
编址方	式	由 LAEConfig 设置	
支持扩展数量(Max)		32	
I/O 容量(Max)	Input(bit)	512	
1/0 行主(Max)	Output(bit)	512	
背板输出	电压	24V DC	
日化和山口	电流	2A	
接口/通讯	1线缆	2*RJ45/5 类双绞线	
安装方式		DN35 导轨安装	
		环境参数	
工作温度		-40 [~] 85℃	
环境湿度		5%-95%无冷凝	
防护等	级	IP20	


表 1 适配器硬件参数

Page13/43

2.2.2 接口介绍

No.

- ①背板状态指示灯
- ②总线系统状态指示灯
 - ③模块型号
 - ④通讯接口 PORT1
 - ⑤通讯接口 PORT2
 - ⑥模块电源端子
 - ⑦背板扩展接口
 - ⑧ 模块 MAC 码

注: PORT1、PORT2 为 EtherNET/IP 通讯端口,支持交换机功能,10M/100M 自适应速率。

Page14/43

2.2.3 LED 指示灯

No.

模块的 LED 指示分为 3 部分: 总线系统状态指示 、背板指示灯、RJ45 链路指示灯。

2.2.4 系统状态指示系统的工作状态说明如表

PWR(电源)	ERR (故障)	RUN(运行)	说明
			电源异常或者无电源
			通讯接口故障
			模块成功进入运行状态,成 功与主站建立循环数据交 互。

表 2 系统状态指示

2.2.5 背板指示系统的工作状态说明如表

B. RN(电源)	B. MER (故障)	B. SER(运行)	说明
			背板启动中
			背板运行正常
			耦合器模块背板错误
			扩展模块背板错误

表 3 系统状态指示

2.2.6 RJ45 指示灯

在正常情况下,RJ45 端口指示灯应该是绿灯长亮、黄灯闪烁,如果不是这样,就说明故障发生了。绿灯不亮,表明 RJ45 端口有连接到 Hub 或交换机的连接有故障;黄灯不亮,可能就是模块本身出现的故障如表 4:表 4 RJ45 指示灯说明

LINK1/LINK2	ACT1/ACT2	说明
	不相关	RJ45 端口没有网线连接或者连接不良
	不相关	RJ45 端口正确的识别到以太网网络
不相关		RJ45 端口没有数据交互
不相关		RJ45 端口有数据交互

表 4 RJ45 指示灯说明

Page15/43

2.2.7 ETHERNET/IP 适配器通讯接口定义

No.

模块使用双 RJ45 插座通信的物理接口,模块本身具备交换机功能。分别标识为 X1P1 、X1P2,每一个端口都 分别具备一个独立的 MAC 地址与模块上的标识 mac 相邻。

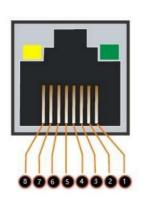
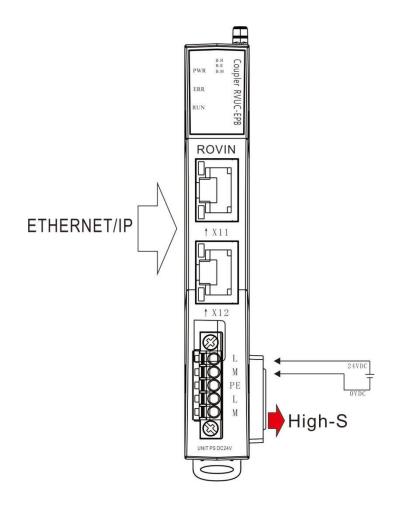



表 5 ETHERNET/IPt 通讯接口

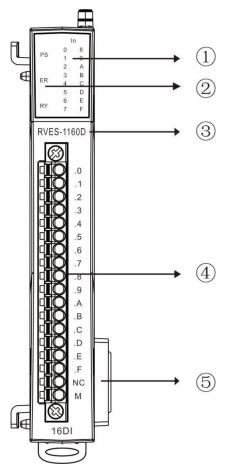
引脚	信号	描述					
1	TX+	数据发送+					
2	TX-	数据发送-					
3	RX+	数据接收+					
4	NC	未使用					
5	NC	未使用					
6	RX-	数据接收-					
7	NC	未使用					
8	NC	未使用					
连接器外	PE	接地					

2.2.8 ETHERNET/IP 适配器电气接线图

Page16/43

3 扩展模块

3.1 RVES-1160D(16 通道数字量输入模块)


3.1.1 模块概述

- ◆模块支持 16 通道数字量输入,支持 NPN 或 PNP 输入,输入电压 DC24V。
- ◆模块可采集现场设备的数字量输出信号(干接点或有源输出)。
- ◆模块可接入2线或3线制数字传感器。
- ◆模块内部总线和现场输入采用光耦隔离。
- ◆模块带有 16 个数字量输入通道 LED 指示灯。
- ◆模块可设置数字信号输入滤波时间。

3.1.2 模块参数

硬件参数						
型号	RVES1160D					
	100MA					
扩展接口	2*20Pin 板对板连接器					
接线	I/O 接线: Max.1.5mm² (AWG 16)					
安装方式	DN35 导轨安装					
环境参数						
工作温度	-40 [~] 85 °C					
环境湿度	5%-95%无冷凝					
防护等级	IP20					
	输入参数					
通道数	16СН					
访问类型	2 Bytes					
输入类型	源型或漏型					
额定输入电压	24 V DC (-15 %/+20 %), (IEC61131-2, type 2)					
"0"信号电平	-3···+5 V (IEC61131-2, type 2)					
"1 "信号电平	15…30 V (IEC61131-2, type2)					
输入电流	Typ. 10mA/Ch (IEC61131-2, type 2)					
Ton	Type. 18uS / Max. 35uS					
Toff	Type. 135uS / Max. 250uS					
电气隔离	输入/控制区: 500V DC					

3.1.3 接口介绍

- ①数字量输入状态指示灯
- ②背板系统状态指示灯
 - ③模块型号
- ④数字量输入接线端子
 - ⑤背板扩展接口

3.1.4 LED 指示灯

模块的 LED 指示分为 2 部分: 背板状态指示 、输入状态指示灯。

Page18/43

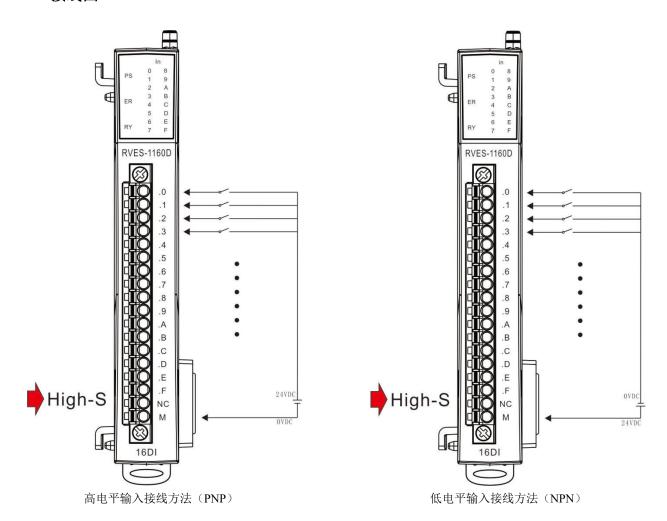
3.1.5 背板指示系统的工作状态说明如表

PS(电源)	ER (故障)	RY(运行)	说明
			扩展模块无电源
			扩展模块背板初始化
			扩展模块正常运行
			扩展模块背板错误

表 1 系统状态指示

3.1.6 输入状态指示

数字量输入端口使用绿色 LED 指示对应通道的状态,灯亮表示输入端口逻辑状态为"1",灯灭表示输入端口逻辑状态为"0"。


3.1.7 接线端子定义

端子序号	符号	说明
1	.0	
2	.1	
3	.2	
4	.3	
5	.4	
6	.5	
7	.6	
8	.7	*** - - - - - - - - - - - - - - - - - - -
9	.8	数字量输入信号
10	.9	
11	.A	
12	.B	
13	.C	
14	.D	
15	.E	
16	.F	
17	NC	空
18	M	输入公共点

No.

Page19/43

3.1.8 接线图

3.1.9 过程数据定义

RVUC

输入数据									
BIT No	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	
BYTE 0	. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0	
BYTE 1	.F	. Е	. D	. C	.В	. A	. 9	. 8	

数据说明: DI (0-F): 当对应通道到输入信号有效时,该位置为"1";输入信号无效时,该位置"0".

3.1.10 配置参数定义

输入数据								
BIT No	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BYTE 0	输入滤波时间 (Filter)							

数据说明:

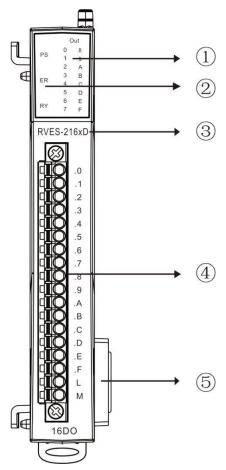
参数名称		单位	格式	输入范围	说明
中文	英文				
输入滤波时间	Filter	ms	十进制	0-255	
				(默认:5)	

Page21/43

3.2 RVES-216xD(16 通道数字量输出模块)

3.2.1 模块概述

- ◆模块支持 16 通道数字量输出,RVES-2161D 是高电平输出,RVES-2162D 是低电平输出,输出电压 DC24V。
 - ◆模块可驱动现场设备(中间继电器,电磁阀等)。
 - ◆模块内部总线和现场输入采用光耦隔离。
 - ◆模块支持输出信号安全模式功能,可以定义在总线通讯断开的情况下的输出点的状态。
 - ◆模块带有 16 个数字量输出通道 LED 指示灯。
 - ◆模块支持短路保护和过载保护。
 - ◆模块具备热关断和过流保护。


3.2.2 模块参数

	TT II A W						
	 硬件参数						
型号	RVES2161D	RVES2162D					
背板电流	10	OOMA					
扩展接口	2*20Pin 板	(对板连接器					
接线	I/O 接线: Max.	1.5mm ² (AWG 16)					
安装方式	DN35 5	异轨安装					
工作温度	-40	~85℃					
环境湿度	5%-95	%无冷凝					
防护等级	IP20						
	输出参数						
通道数	1	6CH					
访问类型	2 Bytes						
输出类型	源型高电平输出 (PNP)	漏型低电平输出(NPN)					
额定输出电压	24 V DC (-15 %/+20 %)	, (IEC61131-2, type 2)					
输出连接器	插拔式	戊连接器					
负载类型	纯阻性,	感性,灯泡					
最大输出电流	Max. 0.5 A/Ch, 名	承通道独立短路保护					
Ton	Type. 12uS	/ Max. 25uS					
Toff	Type. 10mS / Max. 20mS (空载)						
额定总电流		8A					
电气隔离	输入/控制	☑: 500V DC					

Page22/43

3.2.3 接口介绍

No.

- ①数字量输出状态指示灯
- ②背板系统状态指示灯
 - ③模块型号
- ④数字量输出接线端子
 - ⑤背板扩展接口

3.2.4 LED 指示灯

模块的 LED 指示分为 2 部分: 背板状态指示 、输出状态指示灯。

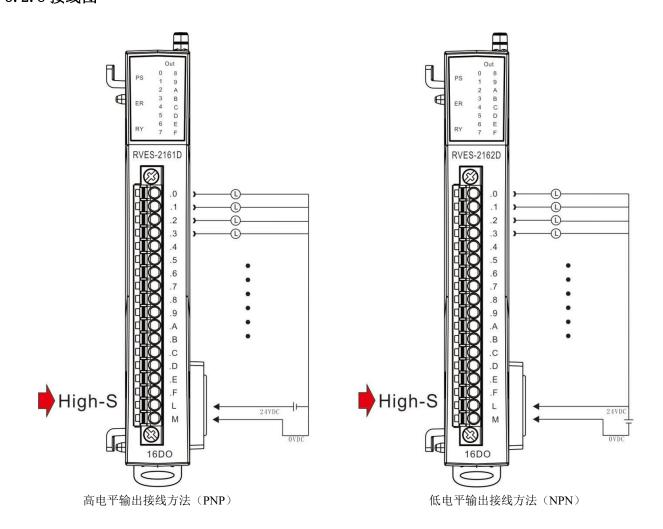
3.2.5 背板指示系统的工作状态说明如表

No.

PS(电源)	ER (故障)	RY(运行)	说明
			扩展模块无电源
			扩展模块背板初始化
			扩展模块正常运行
			扩展模块背板错误

表 1 系统状态指示

3.2.6 输出状态指示


数字量输出端口使用绿色 LED 指示对应通道的状态,灯亮表示输出端口逻辑状态为"1",灯灭表示输出端口逻辑状态为"0"。

3.2.7 接线端子定义

端子序号	符号	说明
1	.0	
2	. 1	
3	. 2	
4	. 3	
5	. 4	
6	. 5	
7	. 6	
8	. 7	数字是於山侩 P.
9	. 8	数字量输出信号
10	. 9	
11	. A	
12	. В	
13	. C	
14	. D	
15	. Е	
16	. F	
17	L	外部电源 24V+
18	M	外部电源 24V-

No.

Page24/43

3.2.9 过程数据定义

输出数据								
BIT No	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BYTE 0	. 7	. 6	. 5	. 4	. 3	. 2	. 1	.0
BYTE 1	. F	. Е	.D	. C	.В	. A	. 9	. 8

数据说明: DQ(0-F): 当对应通道到输入信号有效时,该位置为"1";输入信号无效时,该位置"0".

Page25/43

3.2.10 配置参数定义

от 2. то даз	输处数据									
BIT No	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0		
BYTE 0	DO									
(DO	Error_Mo									
Error_Mod	de									
e bits	For .7	For .6	For .5	For .4	For .3	For .2	For .1	For .0		
0-7)										
BYTE 1	DO Error									
(DO	Value For									
Error_Val	. 7	. 6	. 5	. 4	. 3	. 2	. 1	.0		
ue bits										
0-7)										
BYTE 2	DO									
(D0	Error_Mo									
Error_Mod	de									
e bits	For .F	For .E	For .D	For .C	For .B	For .A	For .9	For .8		
8-15)										
BYTE 3	DO Error									
(DO	Value For									
Error_Val	. F	. Е	.D	. C	.В	. A	. 9	.8		
ue bits										
8-15)										

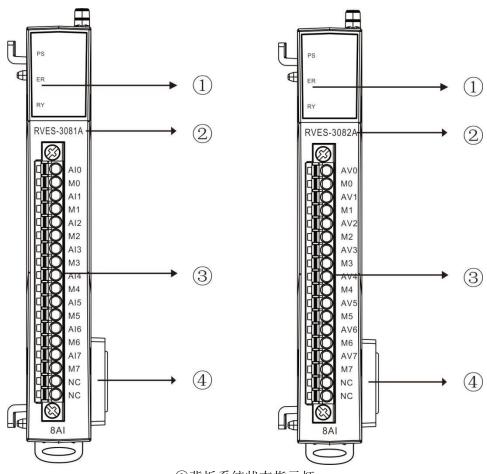
数据说明:

-2 - 3 - 3 - 7 - 7 - 7 - 7	2X4H 7C 71 ·							
参数	名称	单位	格式	输入范围	说明			
中文	英文							
故障模式使能	DO	_	十进制	0-255	DQ0. x 端口的故障安全状态值使能,该参			
	Error_Mode			(默认:	数二进制 bit 位对应 DQO.x 端口(BitO			
	bits			0)	对应 DQ-0.0,依此类推)。当模块进入故			
					障安全状态时,如果"Error Mode"对应			
					bit位为"1",则"Error Value[70]"			
					对应 bit 位的值被输出至相应 DQ0.x 端			
					П。			
故障值安全状	DO	_	十进制	0-255	如果 "Error Mode[70]"参数对应的二			
态值	Error_Value			(默认:	进制 bit 位设置为使能,则当系统进入故			
	bits			0)	障安全状态时,该参数值被输出到 DQ 端			
					口。			

Page26/43

3.3 RVES-308xA(8 通道模拟量输入模块)

3.3.1 模块概述


- ◆模块支持 8 通道模拟信号采集, RVES-3081A 是电流信号采集, RVES-3082A 是电压信号采集。
- ◆RVES-3081A 模块为 4-20mA 电流信号采集。RVES-3082A 模块为 0-10V 电压信号采集
- ◆模块支持2线制(非环路输出,需外部供电)或4线制电流传感器输入。
- ◆模块内部总线和现场输入采用磁隔离。
- ◆模块输入通道接现场有源型模拟信号电流输出传感器。
- ◆模块通道具备 TVS 过压保护。

3.3.2 模块参数

	硬件参数			
型号	RVES3081A	RVES3082A		
背板电流	10	OOMA		
扩展接口	2*20Pin 桢	反对板连接器		
接线	I/O 接线: Max	.1.5mm² (AWG 16)		
安装方式	DN35 <u>4</u>	导轨安装		
	环境参数			
工作温度	-40	~85℃		
环境湿度	5%-95	%无冷凝		
防护等级	IP20			
	输出参数			
通道数	8	ВСН		
访问类型	16 Bytes	或 8 words		
分辨率 分辨率	15 位加-	一个符号位		
输入类型	4-20mA	0-10V		
输入阻抗	≤125 Ω	\geqslant 10M Ω		
采样误差	$\pm 0.3\%$	(满量程)		
采样速度		2ms		
滤波时间	可	配置		

3.3.3 接口介绍

No.

- ①背板系统状态指示灯
 - ②模块型号
- ③模拟量输入接线端子
 - ④背板扩展接口

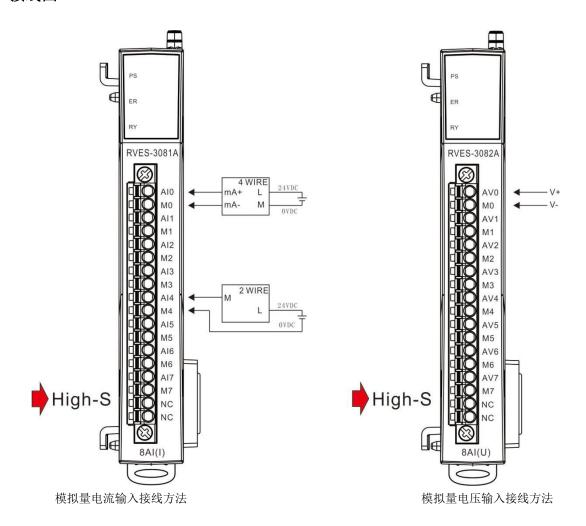
3.3.4 LED 指示灯

模块的 LED 指示分为 1 部分: 背板状态指示。

Page28/43

3.3.5 背板指示系统的工作状态说明如表

PS(电源)	ER (故障)	RY(运行)	说明
			扩展模块无电源
			扩展模块背板初始化
			扩展模块正常运行
			扩展模块背板错误


表 1 系统状态指示

3.3.6 接线端子定义

端子序号	RVES3081A	RVES3082A						
	符号		说明					
1	AIO	AVO						
2	MO	MO						
3	AI1	AV1						
4	M1	M1						
5	AI2	AV2						
6	M2	M2						
7	AI3	AV3						
8	M3	М3	描 th					
9	AI4	AV4	模拟量信号输入					
10	M4	M4						
11	AI5	AV5						
12	M5	M5						
13	AI6	AV6						
14	M6	M6						
15	AI7	AV7						
16	M7	M7						
17	NC	NC	空					
18	NC	NC	空					

No.

3.3.7 接线图

Page30/43

3.3.8 过程数据定义

Analog Input Data (CHO-7): 对应通道的模拟信号输入值。

	输入数据								
BIT No	BIT 7	BIT 6	BIT 5	BIT 4	BIT	3	BIT 2	BIT 1	BIT 0
BYTE 0			An	alog Input	Data	(CH1))		
BYTE 1									
BYTE 2			An	alog Input	Data	(CH2))		
BYTE 3									
BYTE 4			An	alog Input	Data	(CH3))		
BYTE 5									
BYTE 6			An	alog Input	Data	(CH4))		
BYTE 7									
BYTE 8			An	alog Input	Data	(CH5))		
BYTE 9									
BYTE 10			An	alog Input	Data	(CH6))		
BYTE 11									
BYTE 12			An	alog Input	Data	(CH7))		
BYTE 13									
BYTE 14			An	alog Input	Data	(CH8))		
BYTE 15									

3.3.9 配置参数定义

	输入数据									
BIT No	BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0									
BYTE 0			M	leasuring_Ra	ange For CH	1				
BYTE 1				Offset	For CH1					
BYTE 2										
BYTE 3				Gain F	or CH1					
BYTE 4										
BYTE 5		Notch_Filter For CH1								
BYTE 6		AverageNum For CH1								
BYTE 7		Full_value For CH1								
BYTE 8										
BYTE 9		Zero_valueFor CH1								
BYTE 10										
BYTE 11		Measuring_Range For CH2								
BYTE 12				Offset	For CH2					

BYIE ZI	
BYTE 21	
BYTE 20	Zero_valueFor CH2
BYTE 19	
BYTE 18	Full_value For CH2
BYTE 17	AverageNum For CH2
BYTE 16	Notch_Filter For CH2
BYTE 15	
BYTE 14	Gain For CH2
BYTE 13	

数据说明:通道3-7和通道0的配置参数一致。

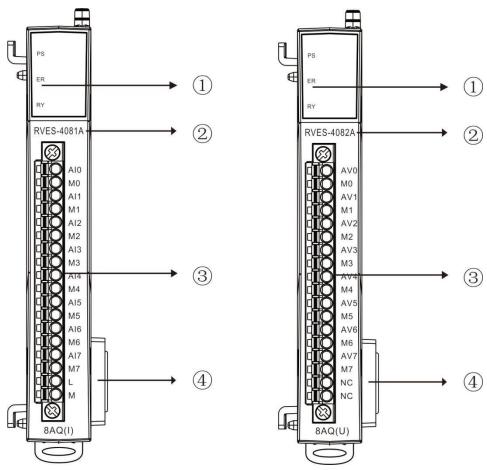
参数	名称	单位	格式	输入范围	说明
中文	英文				
通道1测量范	Measuring_Ra	_	符号	4-20mA (默	选择对应的模拟量量输入范围其中
围	nge For CH1			认)	Disable 表示关闭采样通道
通道1的采样	Offset For	1	十进制	-32768327	这两个参数主要是用来校准模拟前
值偏移	CH1			67	端的。Vi=Vr*Gain/1000+Offset; (Vi
				(默认: 0)	读到数据 Vr 实际输入的数据)
通道1的采样	Gain For CH1	_	十进制	0 65336	
值增益				(默认:	
				1000)	
通道1的频率	Notch_Filter	-	符号	禁用 (默认)	过滤 50Hz 或者 60Hz 的工频杂波干扰
滤波器	For CH1			50Hz	
				60Hz	
通道1的采样	AverageNum	_	符号	×0 (默认)	模块内采用了平均值算法,调整该参
求平均值次数	For CH1			$\times 4$	数可以调整平均值深度,提高采样精
				×8	度,相反会降低响应时间。
				×16	
				×32	
通道1的满量	Full_value	_	十进制	-32768327	最大量程的工程值
程工程值	For CH1			67	
				(默认:	
				32767)	
通道1的零量	Zero_valueFo	=	十进制	-32768327	最小量程的工程值
程工程值	r CH1			67	
				(默认: 0)	

Page32/43

3.4 RVES-408xA(8 通道模拟量输出模块)

No.

3.4.1 模块概述


- ◆模块支持 8 通道模拟信号输出, RVES-4081A 是电流信号输出, RVES-4082A 是电压信号输出。
- ◆RVES-4081A 模块为 4-20mA 电流信号输出。RVES-4082A 模块为 0-10V 电压信号输出
- ◆模块支持2线制输出。
- ◆模块内部总线和现场输入采用磁隔离。
- ◆模块输出通道接电流和电压负载。
- ◆模块通道具备 TVS 过压保护。

3.4.2 模块参数

硬件参数						
型号	RVES4081A	RVES4082A				
背板电流	100	OMA .				
扩展接口	2*20Pin 板2	对板连接器				
接线	I/O 接线: Max.	1.5mm² (AWG 16)				
安装方式	DN35 导	轨安装				
	环境参数					
工作温度	-40 [~]	85℃				
环境湿度	5%-95%无冷凝					
防护等级	IP20					
	输出参数					
通道数	80	CH				
访问类型	16 Bytes 5	或 8 words				
分辨率	16	位				
输出类型	4-20mA	0-10V				
采样速度	单通过	道 1MS				

3.4.3 接口介绍

No.

- ①背板系统状态指示灯
 - ②模块型号
- ③模拟量输入接线端子
 - ④背板扩展接口

3.4.4 LED 指示灯

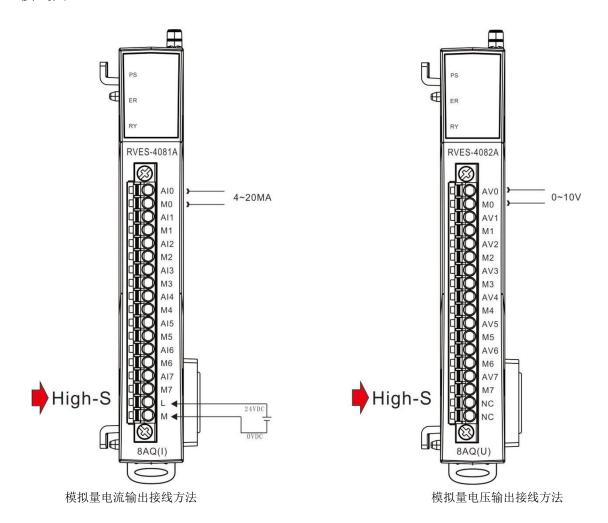
模块的 LED 指示分为 1 部分: 背板状态指示。

Page34/43

3.4.5 背板指示系统的工作状态说明如表

No.

PS(电源)	ER (故障)	RY(运行)	说明
			扩展模块无电源
			扩展模块背板初始化
			扩展模块正常运行
			扩展模块背板错误


表 1 系统状态指示

3.4.6 接线端子定义

端子序号	ES4081A	ES4082A							
	符号		说明						
1	AIO	AVO							
2	MO	MO							
3	AI1	AV1							
4	M1	M1							
5	AI2	AV2							
6	M2	M2							
7	AI3	AV3							
8	М3	М3	##₩₽ <i>₽</i> □₩₩						
9	AI4	AV4	模拟量信号输出						
10	M4	M4							
11	AI5	AV5							
12	M5	M5							
13	AI6	AV6							
14	M6	M6							
15	AI7	AV7							
16	M7	M7							
17	NC	NC	空						
18	NC	NC	空						

No.

3.4.7 接线图

Page36/43

3.4.8 过程数据定义

Analog Input Data (CHO-7): 对应通道的模拟信号输入值。

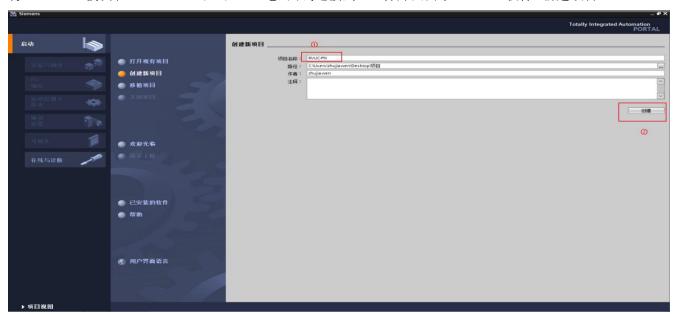
	输出数据									
BIT No	BIT 7	BIT 6	BIT 5	BIT 4	BIT	3	BIT 2	BIT 1	BIT 0	
BYTE 0			Ana	alog Output	Data	(CH1)			
BYTE 1										
BYTE 2			Ana	alog Output	Data	(CH2)			
BYTE 3										
BYTE 4			Ana	alog Output	Data	(CH3)			
BYTE 5										
BYTE 6			Ana	alog Output	Data	(CH4)			
BYTE 7										
BYTE 8			Ana	alog Output	Data	(CH5)			
BYTE 9										
BYTE 10			Ana	alog Output	Data	(CH6)			
BYTE 11										
BYTE 12			Ana	alog Output	Data	(CH7)			
BYTE 13										
BYTE 14			Ana	alog Output	Data	(CH8)			
BYTE 15										

3.4.9 配置参数定义

输处数据											
BIT No	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0			
BYTE 0	Error_Mode (Param: <u>CH1 Error Mode</u>) For CH1										
BYTE 1	Replace value For CH1										
BYTE 2											
BYTE 3	Full value For CH1										
BYTE 4											
BYTE 5	Zero value For CH1										
BYTE 6											
BYTE 7	Error_Mode (Param: <u>CH1 Error Mode</u>) For CH2										
BYTE 8	Replace value For CH2										
BYTE 9											
BYTE 10	Full value For CH2										
BYTE 11											
BYTE 12	Zero value For CH2										
BYTE 13											

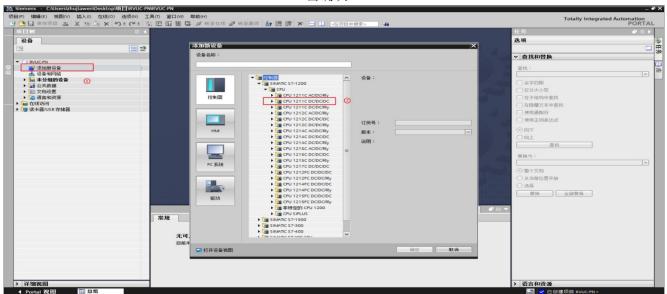
Page37/43

数据说明:通道3-7和通道0的配置参数一致。

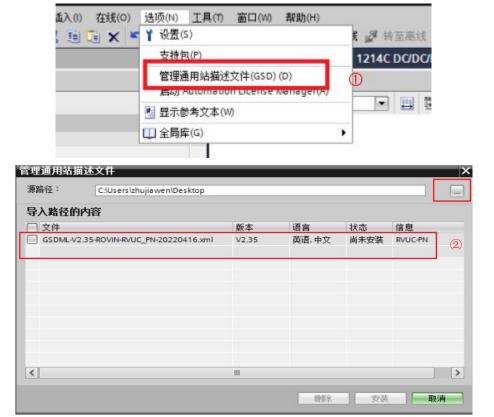

参数	单位	格式	输入范围	说明	
中文	英文				
通道1安全模	Error_Mode	_	符号	02	0: 输出到0
式	(Param:				1: 保持当前值
	CH1_Error_Mo				2: 输出替代值
	de) For CH1				
通道1的替代	Replace	_	十进制	-32768327	-3276832767
值	value For CH1			67	(默认: 0)
通道1的满量	Full value	-	十进制	-32768327	-32768 32767
程工程值	For CH1			67	(默认: 32767)
通道1的零量	Zero value	_	十进制	-32768327	-32768 32767
程工程值	For CH1			67	(默认: 0)

4 应用测试

4.1 RVUC-PNx 与西门子 S7-1200 (TIA V14) 连接使用入门


4.1.1 新建项目

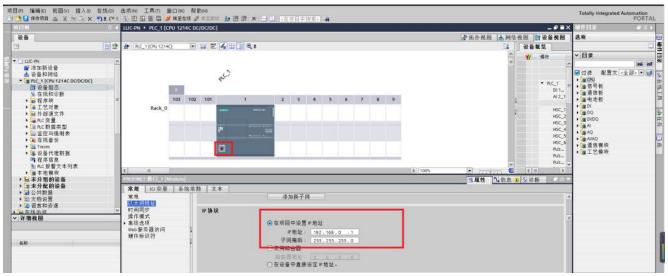
将 RVUC-PNx 模块和 S7-1214C DC/DC/DC 上电, 网线连接到 PC。打开西门子 TIA V14 软件。新建项目"RVUC-PN"。


4.1.2添加西门子 PLC

进入项目视图,在项目树的设备栏,点击 RVUC-PN 项目下"添加新设备",添加 PLC S7-1214C DC/DC/DC,点击确认。

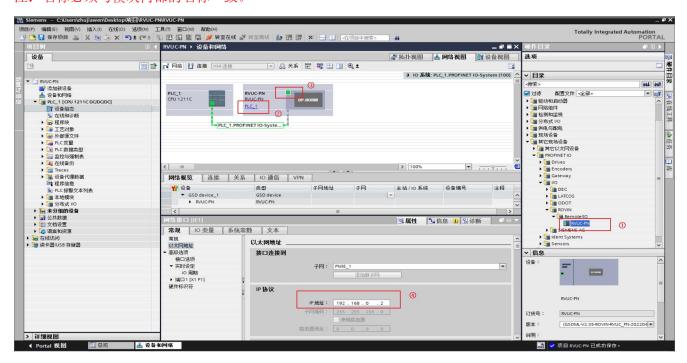
4.1.3 GSD 文件导入

点击"选项"——"管理通用站描述文件 GSD",在弹出的对话框,找到 RVUC-PNx 的 GSD 文件位置,选中 GSD 文件,点击安装,安装完成后,会自动更新硬件目录。

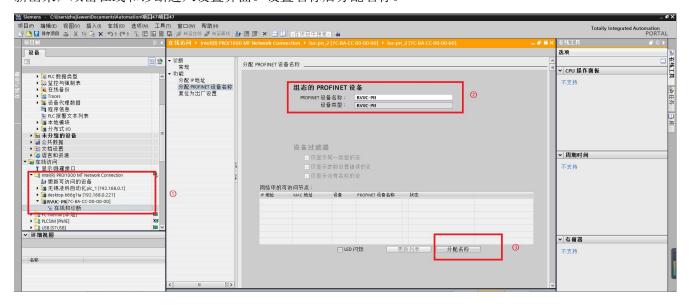


Page40/43

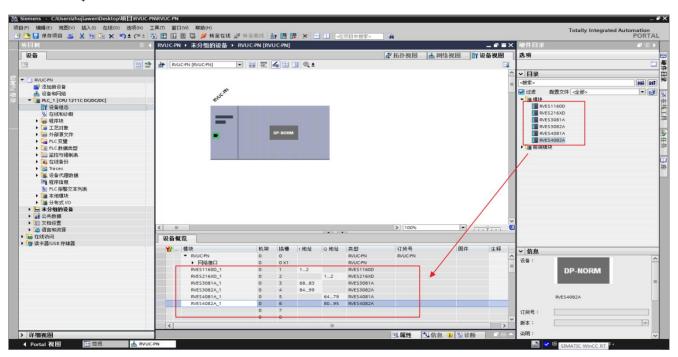
4.1.4 设置 PLC 参数


在设备视图,选中PLC网口,设置网口参数。

No.

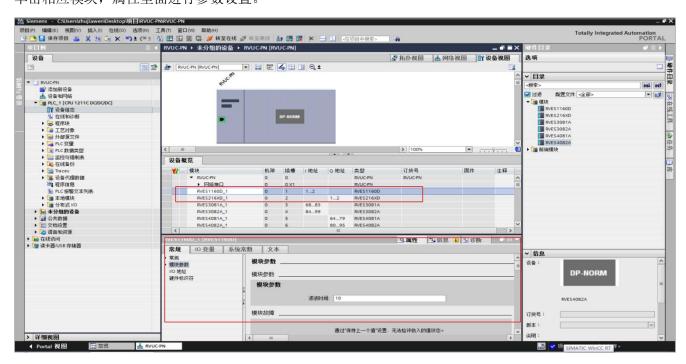

4.1.5 添加模块

在网络视图里,首先将 RVUC-PN 模块拖拽到网络视图里,再分配网络接口到 "PLC_1. PROFINET IO-System",点击网口,修改以太网参数,可分配模块 IP 地址 (192.168.0.2),模块的 PROFINET 设备名称为 "RVUC-PN",注:名称必须与模块内部的名称一致。


4.1.6 修改模块内部的设备名称

点击项目树下面的"在线访问",选择电脑的网卡,单击"更新可访问的设备",就能把在线的模块全部刷新出来,双击在线和诊断进入设置界面。设置名称后分配名称。

4.1.7 插入扩展模块


双击适配器图标进入"设备视图",在"设备概览"添加扩展 IO 模块: RVES1160D、RVES216XD、RVES3081A、RVES3082A等。

Page42/43

4.1.8 扩展模块参数设置

单击相应模块,属性里面进行参数设置。

4.1.9 硬件配置完成

保存、编译、下载。点击"转至在线"。同时可添加新监控表,在监视表上在线监视现场 IO 值。

Page43/43

5 支持及服务

济南罗威智能科技有限公司

中国(山东)自由贸易试验区济南片区颖秀路 2766 号科研生产楼 1-501-1012

http://www.rvauto.cn

销售热线: 0531-88689022 13153170751

Email: huafei851@163.com